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On diffusion approximation of controlled queueing processes

by
Yu-Chung Liao

Abstract
{
‘-Cunstﬂer:g queueing system can be controlled by switching service
rate. When the:e is a cost to change service rate, the control problem
turns out to be a sequential decision problem, i.e., to find a sequence of
optimal stopping times to switch service rate. Under heavy traffic conditioms,
we show that the optimal cost functions of controlled rescaled queueing

processes converge to that of corresponding controlled diffusions for finite

time and for infinite time with discount factor cr:i.terions7-L
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1. Introduction

It is well known that heavy traffic queueing processes can be ;escaled

to approximate diffusion processes. Rath [3] proves that the rescaled.
queueing processes convérge weakly to diffusion processes under certain '
stationary control strategies. In this paper, we consider a queueing system ;
controlled by a finite set of control actions. Each actién represents a i
service rate of the server of the queue. There are holding costs depending
on queue length, operating costs to utilize the server and switching costs ;
to switch control action. We show that the optimal cost functions of the
controlled rescaled queueing processes converge to that of controlled diffusion
processes. Hence, as in Kushner [3], it is meaningful to use diffusion processes
to model queueing systems from a control point of view.

Some weak convergence properties of queueing processes are discussed
in the next section. We define the control problem in Section 3 and prove the

convergence of the optimal cost functions for finite time and for infinite

time with discount factor criterioms.

2. Weak Convergence of Queues

We follow Igleﬁnrt-lhitt [2] and Rath [4] to state the assumptions needed
for uﬁ.k convergence. Let {u(m,n), m > 1} and '{vj(-.n). m > 1} be sequences
of independent and identically distributed random variables for each !
JEA=(1,2,...N) and n > 1. For each n > 1, each of the sequences is

independent of the other. {u(m,n)} denotes the intsrarrival times of n-th

queueing system and {vj(n,n)) denotes the service times of n-th queueing ;
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system when service rate j (i.e., control action j) is being used. VWe

further assume that there is an o > 2 such that

By, a,m® + Eul,m)* <® <= a>1 and jEA,

0 < Eu(l,n} = 1/n(n) n>1,
0 <-Evj(1,h) = lluj(n) n>1 and j €A,
0< limn(n) =n<e,
e
o<li-uj(n)-v.<'° j EA,
0 < 1im oXfu(1,m] = 02 < =,
F sand

0< lim dz(vj(l,n)] - og <o jEA,
tn

mn?.q

j<. jEA

~= < lin [n(a)-4,
we

3.2 3.2,1/2.
‘j = [n c. + ujoj]

In genersl a GI/G/II queue is not a Markov process. But we can make
it Markovian by adding supplementary variables. So the state of such a
process is (x,y,z) where x is the queue length, y is the elapsed time

_since the last customer entered the queue and z is the elapsed time since

the begimning of current service and 2 =0 if x = 0. Let

LA CRNC RN ACRACEA )

be the n-th queueing process umder control action j with initial state
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(x,y,z). Define the normalized process as
QM3 () = (x (0).y (8),2 (1)) .
(x,y,2) n-'nt "%

= (=X, (t),1 ¥ (t) 3 T, (0t))

where

&, (0.7, (00,2, (00) = Q2 ).
As n+ =, Q"’j converges to a process

69 QI () = (xy(1),y,y(1),25(t)).

Here xo(t) is a Brownian motion on R’ with drift dj’ variance a? and

reflected irstantaneously at origin and y°(t) = zo(t) =0 for all t. More

precisely, let all the processes above be defined on a probability space

Q,F,P).

Theorem 1. Let (xn, n.zn) be the initial state of Qn’j, §(n) = Ixn-xol and

T < ». Then there is a sequence q'(n) independent of initial states and j

such that

2 P{ sup |x (t)-x,(t)| > q'(n) + §(m)} < q'(n)
0<t<T

and q'(n) + 0 as n-+ o,

Proof. The probability measures of Qn’j converge weakly to that of QO,.j i
8(n) + 0 as n+ = isproved in Iglehart-Whitt (2]. In (2) the fact that we

can use sup-norm rather than Skorokhod metric is due to the Holder continuity of

Srownian motion.
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3. Convergence of Cost Functions

Let the queueing processes be controlled by switching service rate.

h At the instant of switch if there is a customer being served by service rate
i, then the incompleted service will be discarded, i.e., the service life time
will become zero, and the customer will be served by another service rate
immediately. The control problem is a sequential decision problem with a
deterministic impulse of the z-component of the state at the time of switch.
From an optimal stopping time point of view the "small impulsé'means a slight

variation of obstacle. To make notations manageable, we will restrict to the

M/M/1 case by assuming u(l,n) and vj (1,n) are exponentially distributed
for all n and j. Thus, the queueing processes are Markovian and no
supplementary varisble is needed. .Since we are going to assume the cost
functions depend on queue length only, the argument for GI/G/1 case is the

same. let
s =R,
H S, " {k/nll zlk is a nonnegative integer} n 21,
/- {wn:R’ > snlun is right continuous with left limit} n>0,
xn(t) (wn) - vn(t) L € nn and n>0,
. olx (s)|s <t} =n2o0,

t

Pev e nxo .

te0 *

u::n‘fau ¢
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be defined by
e:(wn) (s) = wn(s+t) n>0 and t > 0.
Then we use
(3) (Qn,Flt‘,F",O:,xn(t),P::n’j)

to denote the n-th rescaled queueing process for n > 0 and the Brownian

wmotion in (1) for n = 0. Let

S = n>=<0 sn’
. X
a n=0 nn’
v N
= X
Ft n=0 Ft’
-]
= X
X(t) =0 Xn(t),
X ph
l’x,j * n=0 l’x .3
n
where - T
X = (xo,x'l,xz,...) €S and }
Ot(w) (s) = w(s+t) w€g and t > 0. ‘
Then

(@,F(,F,0,,X(t) Py )

is a Markov process for each j. Its n-th projection, x“(t). is the process




in (3). Define u = {s(k),u(k)}:=l as an admissible strategy if

s(k) is an Ft-stopping time such that
0 < s(k) < s(k+l) and u(k) is an A-valued
4)

Fs(k)-measurable random variable such that

u(k) # u(k+1) for all k > 1.

Also,let U = {ulu is an admissible strategy}. By Robin [6], for each

jEA, XES and u€ U there is a unique sequence of probability measures

u,k,»
{Px,j}k=0 on  such that
u,0 _
Px.i = Px.3,
) k k-1
u, - u: -
P.i = Px.j o Fom
and
u,k -1 ' = u’k‘l
(6) Pri® 0 0m0®") = Bxoy  pPxisan) uen (B

where B' €F, B € Fs(k)’ Bec {s(k) < =} and IB is the indicator function
of B. From now on, when a real number x 1is considered as an element of Sn

we mean X Tepresents
max{y € Snly < x}
and when x is considered as an element of S we mean

x= (x,x,x,...) €8.
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Lemma 1.

Given x € R', j € A, u = {s(k),u(k)}y_, and T< = there is a

sequence q(n) depending on T only such that

N p‘;".‘{ sup_|x (€)-x,(t)| > (ke)a(m)} < (k+1)q(n)
: )J Oiti'r
] and q(n) >0 3as n-e.
b
Proof.

Let q'(n) be as in Theorem 1 and

am) = q'(m) + a2,

Then (7) holds for k

0 by (2) and (5). Let

-]
H

{ oswp [x (8)-xy(t)] < a(m)}.
0<t<TAs (1)

Then

p¥lcp n{ sup x_(t)-x.(t)| > 2q(n)}
X3 s(l)ATitf_Tl n( %]
u,o
< B I8P (s (yam) ,utn) (28, (B -%o () | > 2a(m)}

< q(n).

s

Hence (7) holds for k = 1. Given (7) for k we can prove it for k + 1 in

the same manner.

L e L oeadt T T M g T T e RS N 3
IRV SRR 3. e i Rt B S NI P W =%

Let the holding and operating cost be described by £:R'x A >R such
that

IRRSEIT W

|£(x,5) - £0y,3)] < Llx-y| j €A and x,y€r"

el

f(x,j) <K JEA and x €R"




for some constant K and L. Let C: AXA - R be the switching cost such
that

C(i,j) >C>0 it
and

i€A

il
(]

C(i,i) =

for some constant C. Given r > 0 as discount factor and 0 < T < * as

terminal time, define the cost functions of initial state (x,j) and strategy

u as
(8) IN(x,3,u,T) = E::';'l Jzkcm)e-rtf(xn(t) ,u(t))dt
) k§1 Lsoen® D1 ,u(),
Jp(rj,uT) = lin Jh0x,5,u,T),
(9) I3, = BT Ize'rtf(xn(t) ,u(t))dt

T -rs(k)
’ kzl Tsay<m® C(u(k-1),u(k))

where C(u(0), u(l)) = C(j,u(l)) and

j t € [0,s(1)),
u(t) =  u(k) t € [s(k),s(k+1)),

u(m) t > s(m)

for all n>0 and m > 0. Then
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Vo (x,3,T) = 13f I (x55,u,T)

is the optimal cost function to control the n-th rescaled queueing process

) for n > 0 and that of reflected Brownian motion for n = 0 and

v:(x,j,'r) = inf J:(x,j,u,'l‘)

u

is that with no more than m switches.

Lemma 2. If T <=, then

(10) VI3, - Vo (x,5,T) = 0(1)  n20.

Proof. Consider m >1 and u € U such that

Jn(x,j,u,T) < TK

and
P::?(s(m) <T) =a

then

a < TK/C(m-1).

Hence, we have

m . .
J.(x,5,u,T) - Jn(x,J,u,T)

< E%R r £(x_(t),u(t))dt
%) Ippsm) M

5_T2K2/C(m-l).

This implies (10).
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Lemma 3. Given T <o and q(n) as in Lemma 1, then there is a function

S e I TIE R

g(m) such that

(11) [VRCx,5,T) - Vg(x,3,M| < gm)a(n)

for all n 3_0, X € R* and j € A.

Proof. For any u € U we have

3 . | N
IJz(X.J.u,T) - JOCX.J.u,TJI

T

KT(m+1)q(n) + TL(m+1)q(n)

IA

z g(m)q(n).
This implies (11).
Theorem 2. lf‘ T < » then

(12) vn(x,j"r) d vo(xaj:T)

uniformly in x as n+w for all j € A.
Proof. By Lemmas 2 and 3 we have
'vn(xnj»T) - vo(xsj"r)l
< |V (x,3,7 - Vi(x,3,1)| + |Vp(x,3,T) - Vi(x,3,1| ¢ [Vg(x:3,T)

- Vo(x,3, 1|

< qm)g(w) + 0(1)

for all x €R* and j € A,
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Corollary 1. If r > 0 then (12) holds for T = .

Remark 1. Let T==, n>0, r> 0,

Px,j,1) = Ef e Tle(x (t),5)dt
n 0 n

and
S
, (13) V™(x,j,T) = inf E f e T E(x_(t),j)dt + e ¥(min C(j,1)
] n s 0 n ifj
« N lx (),1,m) m> 1.

Here s ranges over all Fz-stopping times and the expectations arc taken

with respect to Px 3 Let

Va(x:3.D) = lin Vi(x,3,1).

By Robin [6], V; is the optimal cost function to control n-th system with

admissible strategy in (4) adapted to '{F:} and system with admissible

strategy in (4) adapted to F: and

S
(14) V*(x,j,T) = inf EI e Tte(x_(t),5)dt + e TS{min c,i) + vV™x (s),i,1)
n s 0 n i) n n

where s ranges over all Ft-stopping times for all m> 1 and n > 0. It is

clear that

o0 0
Vn(x.j »T) = vn(x’j »T.

By Dynkin (1], the optimal stopping time in (14) depends on the state of xn.
hence, adapts to P:. From (13) and (14), we have
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Vﬁ(x,j,Tj = V:(x,j,T) m>1 and n>0

by induction on m. Hence,

—v_n(xnj,'r) = vn(x»j sT) n : 0.

So we did not change the problem by considering a larger class of admissible

controls in (4). The same is true for T < =,

Remark 2. In GI/G/1 case, Remark 1 can be repeated if Qn'J is Fellerien

for all n and j. See Dynkin [1] and Robin [6].

Remark 3. The above argument can be generalized to the multi-dimensional case

since we did not use 1-dimension property. See Riemann [5].
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